SURFACE MOUNT TAPE AND REEL

LUR9033H/TR1

DATA SHEET

DOC. NO : QW0905-LUR9033H/TR1
REV
: A
DATE : 06-May.-2008

LIGITEK ELECTRONICS CO.,LTD.
 Property of Ligitek Only

PART NO. LUR9033H/TR1

Package Dimensions

Note : 1.All dimension are in millimeter tolerance is $\pm 0.2 \mathrm{~mm}$ unless otherwise noted.
2.Specifications are subject to change without notice.

Carrier Type Dimensions

Reel Dimensions

Part No.	Description	Quantity/Reel
LUR9033H/TR1	12.0 mm tape,7"reel	1500 devices

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Ratings	UNIT
		UR(H)	
Forward Current	IF	50	mA
Peak Forward Current Duty $1 / 10 @ 10 \mathrm{KHz}$	IFP	100	mW
Power Dissipation	PD	130	$\mu \mathrm{~A}$
Reverse Current @5V	Ir	10	V
Electrostatic Discharge(*)	ESD	2000	${ }^{\circ} \mathrm{C}$
Operating Temperature	Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	$-40 \sim+100$	

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrosatic glove is recommended when handing these LED. All devices, equipment and machinery must be properly grounded.

Typical Electrical \& Optical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

PART NO	MATERIAL	COLOR		Dominant wave length $\lambda \mathrm{Dnm}$	Spectral halfwidth $\triangle \lambda \mathrm{nm}$	Forward voltage @20mA(V)		Luminous intensity @20mA(mcd)		Viewing angle $2 \theta \quad 1 / 2$ (deg)
		Emitted	Lens			Min.	Max.	Min.	Typ.	
LUR9033H/TR1	AlGalnP/GaP	Red	Water Clear	630	20	1.7	2.6	1500	2700	20

Note : 1.The forward voltage data did not including $\pm 0.1 \mathrm{~V}$ testing tolerance.
2. The luminous intensity data did not including $\pm 15 \%$ testing tolerance.

LIGITEK ELECTRONICS CO.,LTD.
 Property of Ligitek Only

Typical Electro-Optical Characteristics Curve UR(H) CHIP

Fig. 1 Forward current vs. Forward Voltage

Fig. 3 Forward Voltage vs. Temperature

Fig. 5 Relative Intensity vs. Wavelength

Fig. 2 Relative Intensity vs. Forward Current

Fig. 4 Relative Intensity vs. Temperature

Fig. 6 Directive Radiation

Recommended Soldering Conditions

1. Hand Solder

Basic spec is $\leqq 280^{\circ} \mathrm{C} 3 \mathrm{sec}$ one time only.
2. Wave Solder

3. LEAD Reflow Solder

4. PB-Free Reflow Solder

Note: 1.Wave solder and reflow soldering should not be made more than one time.
2. You can just only select one of the soldering conditions as above.

Precautions For Use:

Storage time:
1.The operation of Temperatures and RH are : $5^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}, \mathrm{RH}<60 \%$.
2. Once the package is opened, the products should be used within a week.

Otherwise, they should be kept in a damp proof box with descanting agent.
Considering the tape life, we suggest our customers to use our products within
a year(from production date).
3. If opened more than one week in an atmosphere $5^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}, \mathrm{RH}<60 \%$,
they should be treated at $60^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$ for 15 hrs .

Drive Method:

LED is a current operated device, and therefore, requirer some kind of current limiting incorporated into the driver circuit. This current limiting typically takes the form of a current limiting resistor placed in series with the LED.
Consider worst case voltage variations than could occur across the current limiting resistor. The forwrd current should not be allowed to change by more than 40% of its desired value.

Circuit model A

Circuit model B

(A) Recommended circuit.
(B) The difference of brightness between LED could be found due to the VF-IF characteristics of LED.

Cleaning:

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED.

ESD(Electrostatic Discharge):

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrosatic glove is recommended when handing these LED. All devices, equipment and machinery must be properly grounded.

Reliability Test:

Classification	Test Item	Test Condition	Reference Standard
Endurance Test	Operating Life Test	1.Ta=Under Room Temperature As Per Data Sheet Maximum Rating. $\begin{aligned} & \text { 2.If }=20 \mathrm{~mA} \\ & 3 . \mathrm{t}=1000 \mathrm{hrs}(-24 \mathrm{hrs},+72 \mathrm{hrs}) \end{aligned}$	MIL-STD-750D: 1026 MIL-STD-883D: 1005 JIS C 7021: B-1
	High Temperature Storage Test	$\begin{aligned} & \text { 1. } \mathrm{Ta}=105^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & \text { 2. } \mathrm{t}=1000 \mathrm{hrs}(-24 \mathrm{hrs},+72 \mathrm{hrs}) \end{aligned}$	$\begin{gathered} \text { MIL-STD-883D:1008 } \\ \text { JIS C 7021: B-10 } \end{gathered}$
	Low Temperature Storage Test	$\begin{aligned} & \text { 1. } \mathrm{Ta}=-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & \text { 2. } \mathrm{t}=1000 \mathrm{hrs}(-24 \mathrm{hrs},+72 \mathrm{hrs}) \end{aligned}$	JIS C 7021: B-12
	High Temperature High Humidity Storage Test	1. $\mathrm{Ta}=65^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ 2.RH=90\%~95\% 3.t=1000hrs $\pm 2 \mathrm{hrs}$	MIL-STD-202F:103B JIS C 7021: B-11
Environmental Test	Thermal Shock Test		MIL-STD-202F: 107D MIL-STD-750D: 1051 MIL-STD-883D: 1011
	Solderability Test	1.T.Sol $=235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ 2. Immersion time $2 \pm 0.5 \mathrm{sec}$ 3.Coverage $\geqq 95 \%$ of the dipped surface	MIL-STD-202F: 208D MIL-STD-750D: 2026 MIL-STD-883D: 2003 IEC 68 Part 2-20 JIS C 7021: A-2
	Temperature Cycling	$\begin{aligned} & 1.105^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \sim-55^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \\ & 30 \mathrm{mins} 5 \mathrm{mins} 30 \mathrm{mins} 5 \mathrm{mins} \\ & 2.10 \text { Cyeles } \end{aligned}$	```MIL-STD-202F: 107D MIL-STD-750D: 1051 MIL-STD-883D: }101 JIS C 7021:A-4```
	IR Reflow	1.T=260фXC Max. 10sec.Max. 2. 6 Min	$\begin{gathered} \text { MIL-STD-750D:2031.2 } \\ \text { J-STD-020 } \end{gathered}$

